a study of the effect of variatetransformations on strategies OF SAMPLING FINITE POPULATINOS

By
Arijit Chaudhuri and Arun Kumar Adhikary ${ }^{1}$
Indian Statistical Institute, Calcutta
(Received : November, 1981)

Summary

This is a study of the effect of variate-transformations on the 'small-sample' efficiencies of some standard strategies of sampling a finite population on postulating a 'super-population' regression model with a non-zero intercept and a gamma-distributed auxiliary variate. Exact efficiency of regression estimator being difficult to study in general a few competitors are considered; among them the one modifying the Midzuno strategy stands out as a very promising one in several situations.

Introduction

Srivenkataramana [10], following Mohanty and Das [8], recently considered a method (through variate-transformations) of improving on standard estimators (based on SRSWOR sampling scheme) for a population mean

$$
\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} y_{i}
$$

of a variate y assumed to have a linear regression (in a 'finite population' sense) on an auxiliary variate x whose values x_{i} 's for all the units of the population $U=(1, \ldots \ldots, i, \ldots \ldots N)$ are positive and known. Here we extend this technique to the following strategies of sampling with varying probabilities adopting a 'super-population' model (detailed below) : (i) Midzuno [7] strategy involving ratio estimator based on his sampling scheme with selection probabilities of samples (size

[^0]being supposed throughout for each sampling scheme we treat to be a fixed integer n) proportional to aggregates of sizemeasure (x_{i}, s), (ii) Horvitz-Thompson [6] estimator (HTE) based on any IPPS sampling scheme with inclusion probabilities πi 's proportional to x_{i} 's (i.e. $\pi_{i}=n p_{i}$ with $p_{i}=x_{i} / N \bar{X}$, where
$$
\left.\bar{X}=\frac{1}{N} \sum_{i=1}^{N} x_{i}=X / N\right),
$$
(iii) Hansen-Hurwitz [5] strategy involving the usual estimator (HHE ,) in brief) based on PPSWR sampling scheme with normed size-measures pi's involving n draws, (iv) Rao-HartelyCochran [9] (RHC, in brief) strategy involving size measures $x_{i}^{\prime} s$ (detailed description of this strategy is omitted to save space, but we mention that we assume that each group formed in adopting this scheme is of size N / n which is supposed to be an integer), and finally (v) the ratio estimator and ($v i$) the regression estimator both based on SRSWOR sampling scheme. We postulate super-population model M (say) so that we may write
\[

$$
\begin{equation*}
Y_{i}=\alpha+\beta x_{i}+\gamma_{i}, i=1,2, \ldots N \tag{1.1}
\end{equation*}
$$

\]

where $\alpha>0, \beta \geqslant 0$ (both unknown otherwise), $\varepsilon\left(\gamma_{i} \mid x_{i}\right)=0 \forall i$, ($\xi \equiv$ operator for conditional expectation given $x i$'s in respect of a super-population from which the given finite population is supposed to be a random sample). Also we suppose $\varepsilon\left(\gamma_{i} / 2 x_{t}\right)$ $=\delta x_{i}{ }^{g} \forall i, \xi\left(\gamma_{i} \gamma_{j} / x_{i}, x_{j}\right)=0 \quad i \neq j$ with $0<\delta<\infty$ and $0 \leqslant g \leqslant 2$. Further, we assume the x_{i} 's are positive values on random variables (also denoted as $x_{i} ' s$) each distributed independently and identically as a gamma variate with a single parameter namely the mean m (supposed to exceed 2) which we have [on the strength, if needed for logicality, of the law of large numbers which may be supposed to be applicable provided we are ready to assume N to be large, as we are, following Chakrabarti [3] as equal to \bar{X} which is known for the given finite population (the corresponding expectation operator is denoted as ε_{x} for x standing for $x i^{\prime} s, i=1, \ldots N$). By E we mean generically the operator for expectation over sampling design for which (p)s will generically mean selection probability of a samples (typical) according any of the sampling schemes we are studying here. The overall two and three-step expectation operators will be denoted as $\bar{\varepsilon}=\boldsymbol{\varepsilon}_{x} \varepsilon$ and $e=\bar{\varepsilon} E=\varepsilon_{x} \varepsilon E$.

By t_{i} and $t_{i}^{\prime}(i=1, \ldots, 5)$ we shall denote the standard estimators (for the first five situations mentioned above) based on the respective sampling schemes mentioned above (the respective strategies being denoted as D_{i}, D_{i}^{\prime}) and their modifications through variate-transformations (in fact, translations) which are respectively

$$
\begin{aligned}
& t_{1}=t_{1}(\underline{y})=\frac{\bar{y}}{\bar{x}}, \bar{x}, \quad t_{1}=t_{1}(\underline{x})+\theta \\
& t_{2}=t_{2}(\underline{y})=\frac{1}{N} \sum_{i \in S} \frac{y_{i}}{\pi_{i}} \quad t_{2}^{\prime}=t_{2}(\underline{x})+\theta \\
& t_{3}=t_{3}(\underline{y})=\frac{1}{N}: \frac{1}{n} \sum_{\gamma=1}^{n} \frac{y_{r}^{\prime}}{p_{r}^{\prime}}, t_{3}^{\prime}=t_{3}(\underline{z})+\theta \\
& t_{4}=t_{4}(\underline{y})=\frac{1}{N} \sum Y_{i} \frac{p_{i}}{p_{i}}, t_{4}^{\prime}=t_{4} \underline{(z)}+\theta \\
& t_{5}=t_{5}(\underline{y})=\frac{\bar{y}}{\bar{x}} \bar{x}, . \quad t_{5}^{\prime}=t_{5}(\underline{z})+\theta
\end{aligned}
$$

writing $\bar{y}, \bar{x}, \bar{z}$ for sample means and $r=\left(r_{1}, \ldots, r i, \ldots, r_{N}\right)$ for $r=x, y, z, z_{i}=y_{i}-\Theta, y_{r}^{\prime}$ is the value of y_{i} for the unit chosen on the r th draw and p_{r}^{\prime} the corresponding value of $p i$. Here Θ is supposed to be a quantity of the sampler's choice. The regression estimator based on SRSWOR is

$$
t_{R}=\bar{y}+b(m-\bar{x}), \text { where } \mathrm{b}=\frac{\sum_{1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{I}^{n}\left(x_{s}-\bar{x}\right)^{2}}
$$

For varying probability sampling schemes, generalised regression estimators are available in the literature [vide Cassel, Särndal and Wretman [1] but. we will not treat them here to avoid complicated formulae.

2. Study of Efficiencies of the Various Strategies

In order to study the relative efficiencies of the strategies we need compare the value of $; \bar{\varepsilon} E(e-\bar{y})^{2}$ for different $e^{\prime} s$, each standing for one of the estimators above.

For any design-unbiased homogeneous linear estimator $t=t(\underline{y})$ satisfying the condition $t(\underline{x})=\bar{x}$, it may be checked that for the above super-population model (in fact for a more general one with the cominon distribution of $x i^{\prime} s$ being of any arbitrary form) if we considered the competing estimator $t^{\prime}(\underline{y})=t(\underline{z})+\theta$, then it follows (as one may readily check) that

$$
\begin{equation*}
\bar{\varepsilon} E\left(t^{\prime}-\bar{Y}\right)^{2}<\bar{\varepsilon} E(t-\bar{Y})^{2} \text { if } 0<\theta<2 \alpha \tag{1.2}
\end{equation*}
$$

The estimators t and t^{\prime} for the above noted strategies are of this form and hence this result applies to them, giving a rule to choose among t_{i} and $t_{i}^{\prime}(i=1, \ldots 5)$ if we get, on calculations (details omitted to save space),

$$
\begin{array}{r}
V_{1}=\frac{(\alpha-\theta)^{2}}{(n m-1)}+\delta\left[m \frac{\sqrt{m+g}}{\mid \bar{m}} \frac{1}{(n m+g-1)}\right. \\
\left.-\frac{1}{N} \frac{\mid \overline{m+g}}{\mid \bar{m}}\right]
\end{array}
$$

In calculating V_{2} we neglect the term

$$
(\alpha-\theta)^{2} \sum_{i \neq j}\left(\frac{\pi_{i j}}{\pi_{i} \pi_{j}}-1\right)
$$

and thus get a conservative expression on assuming $\pi_{i j}<\pi i \pi_{j}$ $\forall i, j$ ': otherwise no useful formula for V_{2} is available.

$$
\begin{aligned}
& V_{2}=(\alpha-\theta)^{2}\left[\frac{m}{n(m-1)}-\frac{1}{N}\right] \\
&+\delta\left[\frac{m}{n} \cdot \frac{\sqrt{m+g-1}}{\sqrt{m}}-\frac{1}{N} \cdot \frac{\mid \overline{m+g}}{\mid m}\right] \\
& V_{3}=\frac{(\alpha-\theta)^{2}}{n(m-1)}+\delta\left[\frac{m}{N} \cdot \frac{\sqrt{m g-1}}{\sqrt{m}}-\frac{1}{n} \cdot \frac{1}{N} \frac{\sqrt{m+g}}{\mid m}\right] \\
& V_{4}= \frac{N-n}{N-1} \cdot V_{3} \\
& V_{5}=(\alpha-\theta)^{2} \cdot \frac{(n m-2)}{(n m-1)(n m-2)} \\
&+\delta\left[\frac{m^{2} n \mid \overline{m+g}}{\sqrt{m}} \cdot \frac{1}{(n m+g-1)(n m+g-2)}\right. \\
&\left.+\frac{1}{N} \frac{\left\lvert\, \frac{1}{m+g}\right.}{\sqrt{m}}-\frac{2 m n}{N}: \frac{\mid \overline{m+g}}{\sqrt{m}} \cdot \frac{1}{(n m+g-1)}\right]
\end{aligned}
$$

Unfortunately such an exact expression in a closed form is not a vailable for

$$
\bar{\varepsilon} E\left(t_{R}-\bar{Y}\right)^{2}=V_{R} \text { (say) }
$$

In fact, we have

$$
\begin{align*}
V_{R}= & \delta\left(\frac{1}{N}-\frac{1}{N}\right) \frac{\sqrt{m g}}{\mid \overline{m s}} \\
& +\delta E \varepsilon_{x}\left[(m-\bar{x})^{2} \cdot \frac{\sum_{1}^{n} x_{i} \theta^{g}\left(x_{i}-\bar{x}\right)^{2}}{\left\{\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right\}^{2}}\right. \\
& +2\left(\frac{1}{n}-\frac{1}{N}\right)(n-\bar{x}) \frac{\sum_{1}^{n} x_{i} \theta\left(x_{i}-\bar{x}\right)}{\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \text { for } g \neq 0 . \\
= & \delta E \varepsilon_{x}\left[\left(\frac{1}{n}-\frac{1}{N}\right)+\frac{(m-\bar{x})^{2}}{\sum_{l}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \text { for } g=0 . \tag{2.1}
\end{align*}
$$

Further simplifications are obviously difficult to achieve and hence it is not easy to study the exact efficiency of t_{R} under the present model. If, however, we use the usual asymptotic formula namely

$$
\begin{gathered}
E\left(t_{R}-\bar{Y}\right)^{2} \cong\left(\frac{1}{n}-\frac{1}{N}\right) \sigma_{y}^{2}\left(1-\rho^{2}\right) \\
{\left[\text { with } \sigma_{y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}, \sigma_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2},\right.} \\
\left.\sigma_{x y}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)\left(x_{i}-\bar{X}\right) \text { and } \rho=\sigma_{x y} / \sigma_{x} \sigma_{y}\right] \text { available }
\end{gathered}
$$

for n and N large then we get [on algebraic manipulations, with details omitted]

$$
\bar{\zeta} E\left(t_{R}-\bar{Y}\right)^{2} \simeq \frac{N-2}{N-1} \frac{N-n}{N n} \delta=\bar{V}_{R} \text { (say), if } g=0
$$

[general formula for $g \neq 0$ is too complicated for presentation].

On further calculations we may observe the following results in particular
(i) $V_{5}>V_{1}>\bar{V}_{R}>0$, if $g=0$
(ii) $V_{2}>V_{1}$, if $g<1$,
(iii) $V_{3}>V_{1}$ if $g<1$,
(iv) $V_{3}>V_{4} \forall g$
(v) $V_{5}>V_{1}$, if $1<g<2$
(vi) $V_{4}>V_{1}$ if $n m<N(1-g)$ when $0<g<1$
(vii) $V_{2}>V_{3}$ and $V_{2}>V_{4}$; if terms $0(1 / N)$ are neglected
(viii) $V_{2}>V_{5}$, if terms $0(1 / N)$ are neglected
(ix) $V_{5}<V_{3}$, if $n \geqslant 5$ and if $g<g_{0}$ where g_{0} is a root in $[0,2]$ of $g^{2}-\left(n^{2} m-2 n m+3\right) g+\left(n^{2} m-3 n m+2\right)=0$
3. Numerical Values of Relative Efficiencies of Strategies

Defining efficiencies of the strategies as $E_{i}=100 \frac{V_{2}}{V_{i}}$ for $i=\mathrm{I}, \ldots, 6$ and writing $V_{\mathrm{G}}=\overline{V_{R}}$ we present below the values of relative efficiencies of these strategies for a few combinations of the parametric values under the model M considered above.

We consider the following cases respectively denoted as $I-V I$ in Table 3.1 below and present the values of E_{i} for $\theta=0 . I, 0.5,0.8$ in the order from top to bottom in cases $I-I V$ and for $\theta=1.1,1.5,1.8$ for case V and $\theta=.5 ; 1.5$ and 2.0 in Case VI.

58 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL statistics
$00 I=N \mathfrak{t}=\boldsymbol{u} 8=u \quad 0^{\circ} \tau=q \Im \mathfrak{q}=\infty$

	16	001	16	001	16	
	16	001	$L 6$	001	16	
	26	001	L6	001	26	$0 \cdot 2=8$
	＋6	001	$L 6$	001	96	
	t6	001	16	001	56	
	96	z01	66	001	86	$\varsigma^{*} 1=8$
	86	201	86	001	－ 20 I	
	L6	001	L6	001	001	
	¢01	001	¢01	001	901	$0 \cdot 1=8$
	\＄01	tor	101	001	$0!1$	
	001	001	$L 6$	001	s0I	
	LII	411	£II	001	£̨I	$\varsigma^{\circ} 0=8$
I¢I	SII	III	801	001	£てI	
911	t01	001	L6	001	II	
$\downarrow \angle \mathrm{L}$	$9+1$	でロ	LEI	001	9¢1	$0 \cdot 0=8$
						IA ${ }^{\text {a }}$

$$
0 t=N \quad t=u 8=\| \prime 0^{\prime} Z=8 \mathrm{~S}^{\prime} \mathrm{I}=n
$$

	06	－ 66	16	091	16	
	06	66	16	001	16	
	06	66	16	00 I	16	$0^{\circ} 2=8$
	£ 01	001	26	001	§6	
	E6	66	26	001	¢6	
	£6	001	26	001	S6	$\mathrm{s}: \mathrm{l}=8$
	L6	I0I	$\varepsilon 6$	001	101	
	L6	000	26	001	001	
	L6	101	E6	001	tor	0108
	z0I	201	ャ6	00I	LOI	
	001	101	E6	001	901	
－	¢01	£0I	¢6	00I	801	$50=8$
ゅてI	601	SOL	－ 26	001	911	
611	SoI	101	E6	00I	ZII	
82 I	211	801	001	001	611	$00=8$
						$A^{\partial S D}$

Concluding remarks

The numerical values presented in Table 3 I conform to the algebraic results derived in section 3 . We find that for $g=0$, the regression estimator, of course, is the most efficient even for small n and N, but we considered only an asymptotic variance formula for this estimator but exact ones for the rest-(obviously not a fair approach). . For $g \neq 0$, the regression estimator is not considered as its asymptotic or exact variance formula is not available and in this case the strategy D_{1}^{\prime} fares best in case $g<1$ and D_{2}^{\prime} fares best in case $g<1$ and $D_{1}^{\prime}, D_{2}^{\prime}$ and D_{4}^{\prime} are equivalent if $g=1$ and $\theta=\alpha$, otherwise D_{4}^{\prime} fares mid-way between D_{1}^{\prime} and D_{2}^{\prime} [consistently with Chaudhuri-Arnab (1979) in case when no variate-translation is made]. Interestingly, D_{5}^{\prime} fares poorer compared to D_{1}^{\prime} even if N is large compared to n.

Acknowledgement

The authors are grateful to the referee for his recommendation to furnish results for an empirical study as given in the Appendix below and for his yaluable remarks helpful in revising an earlier draft.

References

[1] Cassel, C.M., Särndal, C.E. and
Wretman, J.H. (1976)
[2] Chaudhuri, Arijit and : On the relative efficiencies of sampling Arnab, Raghunath (1979) strategies under a superpopulation model.
[3] Chakrabarti, R.P. (1973) : A note on the small sample theory of the
[4] Cocharan, W.G. (1977) : Sampling Techniques. John Wiley and
[5] Hansen, M.H. and : On the theory of sampling from finite Hurwitz, W.N. (1943)
[6] Horvitz, D.G. and Thompson, D.J. (1952)

Sankhyā, C, 41, 40-43. ratio estimator in certain specified populations. J. Ind. Soc. Agri. Statist. 26, 49-57. Sons, 325.
: Some results on generalised difference estimation and generalised regression estimation for finite populations. Biometrika, 63, 615-620.
On the relative efficiencies of sampling
strategies under a superpopulation model. populations. Ann. Math. Statist. 14, 333-362.

[^1][7] Midzuno, H. (1952) : On the sampling system with probability proportional to sums of sizes. Ann. Inst. Statist. Math. 3, 99-107.
[8] Mohanty, S. and Das, M.N. (197J)
[9] Rao, J.N.K., Hartley, H.O. and Cochran, W.G. (1962).
[10] Srivenketaramana, T, (1978).
: Use of transformation in sampling. J. Ind. Soc. Agri. Statist. 23, 83-87.
: On a simple procedure of unequal proba= bility sampling without replacement. J. Roy. Statist. Soc. Ser. B. 24, 482-491.
: Change of origin and scale in ratio and difference methods of estimation in sampling. Canad. J. Statist. 6, 79-86.

EMPIRICAL STUDY

In the above study we have compared the relative efficiencies of the strategies for a few combinations of the parametric values under the model M. Now to compare the efficiencies of the strategies for some actual population we consider the population considered by Cochran [4], (p. 325) which consists of the number of persons in a block, y, and number of rooms in a block, x, in 10 blocks. Writing $V_{i}^{\prime}=E\left(t_{i}^{\prime}-\bar{Y}\right)^{2}$, $i=1, \ldots, 5$, for the variances of the estimators $t i$ we present below in Table I the values of V_{i}^{\prime} for a few selected values of θ viz. $\theta=12,22,32,42$ and 52 to see how the transformed estimators behave over the corresponding original ones; we also consider the situation $\theta=0$ which corresponds to the case when no variate-transformation is made. In each case we take $n=2$ and for this n, the 45 possible, samples were listed and the variances of the estimators t_{1}^{\prime}, t_{5} and t_{R} (with $m=\bar{X}$) were computed from first principles, to avoid approximations. To calculate the variance of the estimator t_{2} we have used the Midzuno [7], sampling scheme so modified as to give an IPPS sampling scheme because fortunately for the above population all the normed size measures satisfy the requirement for applying the modified Midzuno sampling scheme. We have also computed the variance of the regression estimator t_{R} by using the well-known asymptotic variance formula due to Cochran [4]. But this asymptotic formula underestimates the actual variance of the regression estimator substantially for small n which is clear from the last column of Table 1 in which the figure within the parenthesis gives the asymptotic variance of t_{R} which is much smaller than the actual variance (denoted by V_{6}^{\prime}) of t_{R} computed from first principles. Incidentally we note the variance of t_{R} remains invariant under variate-transformation.

Defining efficiencies of the strategies as $E_{i}^{\prime}=100 \frac{V_{2}^{\prime}}{V_{i}^{\prime}}$ for $i=1, \ldots, 6$ we present below in table 2 the values of the relative efficiencies of the strategies for the selected values of θ.

TABLE 1
Variances of the sampling strategies for various value of θ

θ	V_{1}^{\prime}	V_{2}^{\prime}	V_{3}^{\prime}	V_{4}^{\prime}	V_{5}^{\prime}	V_{6}^{\prime}
0	61.32	63.74	71.16	63.25	63.06	$2639.21(54.92)$
12	57.49	59.58	66.47	59.08	58.92	$"$
22	55.89	57.63	64.31	57.17	57.09	$"$
32	55.74	57.06	63.76	56.67	56.71	,
42	57.04	57.88	64.79	57.59	57.80	$"$
52	59.79	60.07	67.42	59.93	60.36	, 1

TABLE 2
Relative efficiencies $\left(E_{i}^{\prime}\right)$ of the sampling strategies for various valucs of θ

θ	E_{1}^{\prime}	E_{2}^{\prime}	E_{3}^{\prime}	E_{4}^{\prime}	${ }^{\prime} E_{5}^{\prime}$	E_{6}^{\prime}
0	103.95	100	89.57	100.77	101.08	$2.42(116.06)$
12	103,64	100	89.63	100.85	101.12	$2.26(108.48)$
22	103.11	100	89.61	100.80	100.96	$2.18(104.93)$
32	102.37	100	89.49	100.62	100.62	$2.16(103.90)$
42	101.47	100	89.33	100.50	100.13	$2.19(105.39)$
52	100.47	100	89.10	100.23	99.52	$2.28(109.38)$

This empirical study indicates that the strategy D_{1}^{\prime} fares best and D_{4}^{\prime} fares mid-way between D_{1}^{\prime} and D_{2}^{\prime} which is quite consistent with our theoretical findings under the model M in case $g<1$. Interestingly, here also D_{5}^{\prime} fares poorer eompared to D^{1} as we noted earlier.

To have an idea about the gain in efficiencies of the transformed strategies over the corresponding original ones we present below in Table 3 the values of the relative efficiencies of the transformed strategies defind as $E_{i}^{\prime}=\frac{\operatorname{Var}\left(t_{i}\right)}{\operatorname{Var}\left(t_{i}^{\prime}\right)} 100$, $i=1, \ldots, 5$, for various values of θ.

- TABLE 3

Relative efficiencies $\left(E_{i}\right)$ of the transformed strategies
for various values of θ

θ	E_{1}^{*}	E_{2}^{*}	E_{3}^{\prime}	E_{i}^{*}	E_{5}^{*}
0	100	100	100	100	100
12	106.66	106.98	107.06	107.06	107.03
22	109.72	110.60	110.65	110.63	110.48
32	110.01	111.71	111.61	111.61	111.20
42	107.50	110.12	109.83	109.83	109.83
.52	102.56	106.11	105.55	105.54	104.47

Among the values of θ considered above we find that the value $\theta=32$ leads to a higher gain in efficiency in each case compared to the other values of θ.

[^0]: 1. Present Address : ORG, Baroda.
[^1]: : A generalisation of sampling without replacement from finite universes. J. 'Amer: Static Assos. 47, 663-685.

